使用 SkyPilot 进行部署和扩充
vLLM 可以通过 SkyPilot (一个用于在任何云端运行 LLM 的开源框架)在云端和 Kubernetes 上运行并扩充为多个服务副本。关于更多各种开放模型的示例,例如 Llama-3、Mixtral 等,可以在 SkyPilot AI gallery 中找到。
依赖
-
前往 HuggingFace 模型页面 , 请求获取模型
meta-llama/Meta-Llama-3-8B-Instruct
。 -
检查您是否已安装 SkyPilot(文档)。
-
检查
sky check
命令的结果以确认云服务或 Kubernetes 是否已启用。
pip install skypilot-nightly
sky check
在单个实例上运行
请参阅用于服务的 vLLM SkyPilot YAML 文件,即 serving.yaml。
resources:
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # 我们可以为 8B 型号使用更便宜的加速器。
use_spot: True
disk_size: 512 # Ensure model checkpoints can fit.
disk_size: 512 # 确保模型检查点足够容纳。
disk_tier: best
ports: 8081 # Expose to internet traffic.
ports: 8081 # 公开于互联网的端口。
envs:
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
HF_TOKEN: <your-huggingface-token> # 更改为你自己的 huggingface token,或者使用 --env 来传递。
setup: |
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm==0.4.0.post1
# Install Gradio for web UI.
# 安装 Gradio for web UI。
pip install gradio openai
pip install flash-attn==2.5.7
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log &
echo 'Waiting for vllm api server to start...'
while ! `cat api_server.log | grep -q 'Uvicorn running on'`; do sleep 1; done
echo 'Starting gradio server...'
git clone https://github.com/vllm-project/vllm.git || true
python vllm/examples/gradio_openai_chatbot_webserver.py \
-m $MODEL_NAME \
--port 8811 \
--model-url http://localhost:8081/v1 \
--stop-token-ids 128009,128001
在列表中的任何一个候选 GPU (L4、A10g 等) 上启动服务以运行 Llama-3 8B 模型:
HF_TOKEN="your-huggingface-token" sky launch serving.yaml --env HF_TOKEN
检查命令的输出结果。将会有一个可分享的 gradio 链接(如下面的最后一行),在浏览器中打开此链接,便可使用 LLaMA 模型进行文本补全任务。
(task, pid=7431) Running on public URL: https://<gradio-hash>.gradio.live
**可选操作:**使用 70B 模型代替默认的 8B 模型,并使用更多的 GPU:
HF_TOKEN="your-huggingface-token" sky launch serving.yaml --gpus A100:8 --env HF_TOKEN --env MODEL_NAME=meta-llama/Meta-Llama-3-70B-Instruct
扩充到多个副本
SkyPilot 可以通过内置的自动缩放、负载均衡和容错功能将服务扩充到多个服务副本。您可以通过向 YAML 文件添加服务部分来完成此操作。
service:
replicas: 2
# An actual request for readiness probe.
# 准备就绪探针的实际请求。
readiness_probe:
path: /v1/chat/completions
post_data:
model: $MODEL_NAME
messages:
- role: user
content: Hello! What is your name?
max_tokens: 1
点击查看完整的 YAML 配置
service:
replicas: 2
# An actual request for readiness probe.
# 准备就绪探针的实际请求。
readiness_probe:
path: /v1/chat/completions
post_data:
model: $MODEL_NAME
messages:
- role: user
content: Hello! What is your name?
max_tokens: 1
resources:
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # 我们可以为 8B 型号使用更便宜的加速器。
use_spot: True
disk_size: 512 # Ensure model checkpoints can fit.
disk_size: 512 # 确保模型检查点足够容纳。
disk_tier: best
ports: 8081 # Expose to internet traffic.
ports: 8081 # 公开于互联网的端口。
envs:
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
HF_TOKEN: <your-huggingface-token> # 更改为你自己的huggingface token,或者使用 --env 来传递。
setup: |
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm==0.4.0.post1
# Install Gradio for web UI.
# 安装 Gradio for Web UI。
pip install gradio openai
pip install flash-attn==2.5.7
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log
在多个副本上启动服务以运行 Llama-3 8B 模型:
HF_TOKEN="your-huggingface-token" sky serve up -n vllm serving.yaml --env HF_TOKEN
等待服务准备就绪:
watch -n10 sky serve status vllm
示例输出:
Services
NAME VERSION UPTIME STATUS REPLICAS ENDPOINT
vllm 1 35s READY 2/2 xx.yy.zz.100:30001
Service Replicas
SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION
vllm 1 1 xx.yy.zz.121 18 mins ago 1x GCP([Spot]{'L4': 1}) READY us-east4
vllm 2 1 xx.yy.zz.245 18 mins ago 1x GCP([Spot]{'L4': 1}) READY us-east4
在服务变为「READY」状态后,您可以找到该服务的单个端点,并使用该端点访问该服务:
ENDPOINT=$(sky serve status --endpoint 8081 vllm)
curl -L http://$ENDPOINT/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Who are you?"
}
],
"stop_token_ids": [128009, 128001]
}'
To enable autoscaling, you could replace the [replicas] with the following configs in service: 要启用自动缩放功能,您可以在「service」中用以下配置替换“[replicas]”
service:
replica_policy:
min_replicas: 2
max_replicas: 4
target_qps_per_replica: 2
当 QPS 超过 2 时,会将服务扩充到每个副本。
点击查看完整的 YAML 配置
service:
replica_policy:
min_replicas: 2
max_replicas: 4
target_qps_per_replica: 2
# An actual request for readiness probe.
# 准备 就绪探针的实际请求。
readiness_probe:
path: /v1/chat/completions
post_data:
model: $MODEL_NAME
messages:
- role: user
content: Hello! What is your name?
max_tokens: 1
resources:
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # 我们可以为 8B 型号使用更便宜的加速 器。
use_spot: True
disk_size: 512 # Ensure model checkpoints can fit.
disk_size: 512 # 确保模型检查点足够容纳。
disk_tier: best
ports: 8081 # Expose to internet traffic.
ports: 8081 # 公开于互联网的端口。
envs:
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
HF_TOKEN: <your-huggingface-token> # Change to your own huggingface token, or use --env to pass.
HF_TOKEN: <your-huggingface-token> # 更改为你自己的 huggingface token,或者使用 --env 来传递。
setup: |
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm==0.4.0.post1
# Install Gradio for web UI.
# 安装 Gradio for Web UI。
pip install gradio openai
pip install flash-attn==2.5.7
run: |
conda activate vllm
echo 'Starting vllm api server...'
python -u -m vllm.entrypoints.openai.api_server \
--port 8081 \
--model $MODEL_NAME \
--trust-remote-code \
--tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
2>&1 | tee api_server.log
使用新配置更新服务的操作:
HF_TOKEN="your-huggingface-token" sky serve update vllm serving.yaml --env HF_TOKEN
停止服务的操作:
sky serve down vllm
可选: 将 GUI 连接到端点
也可以使用单独的 GUI 前端访问 Llama-3 服务,这样发送到 GUI 的用户请求将在副本之间进行负载平衡。
点击查看完整的 GUI YAML
envs:
MODEL_NAME: meta-llama/Meta-Llama-3-8B-Instruct
ENDPOINT: x.x.x.x:3031 # Address of the API server running vllm.
ENDPOINT: x.x.x.x:3031 # 运行 vllm 的 API 服务器的地址。
resources:
cpus: 2
setup: |
conda create -n vllm python=3.10 -y
conda activate vllm
# Install Gradio for web UI.
# 安装 Gradio for Web UI。
pip install gradio openai
run: |
conda activate vllm
export PATH=$PATH:/sbin
echo 'Starting gradio server...'
git clone https://github.com/vllm-project/vllm.git || true
python vllm/examples/gradio_openai_chatbot_webserver.py \
-m $MODEL_NAME \
--port 8811 \
--model-url http://$ENDPOINT/v1 \
--stop-token-ids 128009,128001 | tee ~/gradio.log
1.启动聊天 Web UI:
sky launch -c gui ./gui.yaml --env ENDPOINT=$(sky serve status --endpoint vllm)
2.然后,我们可以通过返回的 gradio 链接访问 GUI:
| INFO | stdout | Running on public URL: https://6141e84201ce0bb4ed.gradio.live