Skip to main content

环境变量

vLLM 使用以下环境变量来配置系统:

警告

请注意, VLLM_PORTVLLM_HOST_IP 是用于设置 vLLM 内部使用的端口和 IP,它们并非 API 服务器的端口和 IP。如果您使用 --host $VLLM_HOST_IP--port $VLLM_PORT 来启动 API 服务器,将无法正常运行。

vLLM 所使用的所有环境变量都以 VLLM_ 为前缀。 Kubernetes 用户需要特别注意:请不要将服务命名为 vllm,否则 Kubernetes 设置的环境变量可能会与 vLLM 的环境变量冲突,因为 Kubernetes 会以大写的服务名称作为前缀为每个服务设置环境变量

environment_variables: Dict[str, Callable[[], Any]] = {


# ================== Installation Time Env Vars ==================
# ================== 安装时的环境变量 ==================


# Target device of vLLM, supporting [cuda (by default),
# rocm, neuron, cpu, openvino]
# vLLM的目标设备,支持[cuda(默认)、rocm、neuron、cpu、openvino]
"VLLM_TARGET_DEVICE":
lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda"),


# Maximum number of compilation jobs to run in parallel.
# By default this is the number of CPUs
# 并行运行的最大编译任务数。
# 默认是CPU的数量
"MAX_JOBS":
lambda: os.getenv("MAX_JOBS", None),


# Number of threads to use for nvcc
# By default this is 1.
# If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
# 用于nvcc的线程数
# 默认是1。
# 如果设置,`MAX_JOBS` 将减少以避免 CPU 过载。
"NVCC_THREADS":
lambda: os.getenv("NVCC_THREADS", None),


# If set, vllm will use precompiled binaries (*.so)
# 如果设置,vllm将使用预编译的二进制文件(*.so)
"VLLM_USE_PRECOMPILED":
lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")),


# CMake build type
# If not set, defaults to "Debug" or "RelWithDebInfo"
# Available options: "Debug", "Release", "RelWithDebInfo"
# CMake 的构建类型
# 如果未设置,默认是 “Debug” 或 “RelWithDebInfo”
# 可用选项:“Debug”、“Release”、“RelWithDebInfo”
"CMAKE_BUILD_TYPE":
lambda: os.getenv("CMAKE_BUILD_TYPE"),


# If set, vllm will print verbose logs during installation
# 如果设置,vllm 将在安装过程中打印详细日志
"VERBOSE":
lambda: bool(int(os.getenv('VERBOSE', '0'))),


# Root directory for VLLM configuration files
# Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
# Note that this not only affects how vllm finds its configuration files
# during runtime, but also affects how vllm installs its configuration
# files during **installation**.
# VLLM 配置文件的根目录
# 默认为 `~/.config/vllm`,除非设置了 `XDG_CONFIG_HOME`
# 注意,这不仅影响 vllm 在运行时如何找到其配置文件,还影响 vllm 在**安装**期间如何安装其配置文件。
"VLLM_CONFIG_ROOT":
lambda: os.path.expanduser(
os.getenv(
"VLLM_CONFIG_ROOT",
os.path.join(get_default_config_root(), "vllm"),
)),


# ================== Runtime Env Vars ==================
# ================== 运行时的环境变量 ==================


# Root directory for VLLM cache files
# Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
# VLLM 缓存文件的根目录
# 默认为 `~/.cache/vllm`,除非设置了 `XDG_CACHE_HOME`
"VLLM_CACHE_ROOT":
lambda: os.path.expanduser(
os.getenv(
"VLLM_CACHE_ROOT",
os.path.join(get_default_cache_root(), "vllm"),
)),


# used in distributed environment to determine the ip address
# of the current node, when the node has multiple network interfaces.
# If you are using multi-node inference, you should set this differently
# on each node.
# 在分布式环境中,用于确定当前节点的 IP 地址,当节点有多个网络接口时。
# 如果你使用多节点推理,你应该在每个节点上分别设置它。
'VLLM_HOST_IP':
lambda: os.getenv('VLLM_HOST_IP', "") or os.getenv("HOST_IP", ""),


# used in distributed environment to manually set the communication port
# Note: if VLLM_PORT is set, and some code asks for multiple ports, the
# VLLM_PORT will be used as the first port, and the rest will be generated
# by incrementing the VLLM_PORT value.
# '0' is used to make mypy happy
# 在分布式环境中,用于手动设置通信端口
# 注意:如果设置了 VLLM_PORT,并且某些代码需要多个端口,
# VLLM_PORT 将用作第一个端口,其他端口通过递增 VLLM_PORT 值生成。
# '0' 是为了通过 mypy 检查
'VLLM_PORT':
lambda: int(os.getenv('VLLM_PORT', '0'))
if 'VLLM_PORT' in os.environ else None,


# path used for ipc when the frontend api server is running in
# multi-processing mode to communicate with the backend engine process.
# 当前端 API 服务器在多进程模式下运行时,用于与后端引擎进程通信的 ipc 路径
'VLLM_RPC_BASE_PATH':
lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),


# If true, will load models from ModelScope instead of Hugging Face Hub.
# note that the value is true or false, not numbers
# 如果为 true,将从 ModelScope 加载模型,而不是从 Hugging Face Hub 加载。
# 注意,值为 true 或 false,而不是数字
"VLLM_USE_MODELSCOPE":
lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",


# Instance id represents an instance of the VLLM. All processes in the same
# instance should have the same instance id.
# 实例 ID 表示 VLLM 的一个实例。所有在同一实例中的进程应该具有相同的实例 ID
"VLLM_INSTANCE_ID":
lambda: os.environ.get("VLLM_INSTANCE_ID", None),


# Interval in seconds to log a warning message when the ring buffer is full
# 当环形缓冲区满时,记录警告消息的间隔(秒)
"VLLM_RINGBUFFER_WARNING_INTERVAL":
lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),


# path to cudatoolkit home directory, under which should be bin, include,
# and lib directories.
# cudatoolkit 主目录的路径,其中应包含 bin、include 和 lib 目录。
"CUDA_HOME":
lambda: os.environ.get("CUDA_HOME", None),


# Path to the NCCL library file. It is needed because nccl>=2.19 brought
# by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
# NCCL 库文件的路径。由于 nccl>=2.19 带来的错误,PyTorch 需要此文件:
# https://github.com/NVIDIA/nccl/issues/1234
"VLLM_NCCL_SO_PATH":
lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),


# when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
# library file in the locations specified by `LD_LIBRARY_PATH`
# 当未设置 `VLLM_NCCL_SO_PATH` 时,vllm 将尝试在 `LD_LIBRARY_PATH`
# 指定的位置查找 NCCL 库文件
"LD_LIBRARY_PATH":
lambda: os.environ.get("LD_LIBRARY_PATH", None),


# flag to control if vllm should use triton flash attention
# 控制 vllm 是否应使用 Triton Flash Attention 的标志
"VLLM_USE_TRITON_FLASH_ATTN":
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
("true", "1")),


# Internal flag to enable Dynamo graph capture
# 内部标志以启用 Dynamo 图捕获
"VLLM_TEST_DYNAMO_GRAPH_CAPTURE":
lambda: int(os.environ.get("VLLM_TEST_DYNAMO_GRAPH_CAPTURE", "0")),
"VLLM_DYNAMO_USE_CUSTOM_DISPATCHER":
lambda:
(os.environ.get("VLLM_DYNAMO_USE_CUSTOM_DISPATCHER", "True").lower() in
("true", "1")),


# Internal flag to control whether we use custom op,
# or use the native pytorch implementation
# 内部标志以控制我们是否使用自定义操作,
# 或使用本机 PyTorch 实现
"VLLM_TEST_COMPILE_NO_CUSTOM_OPS":
lambda: int(os.environ.get("VLLM_TEST_COMPILE_NO_CUSTOM_OPS", "0")),


# Internal flag to enable Dynamo fullgraph capture
# 内部标志以启用 Dynamo 全图捕获
"VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
lambda: bool(
os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),


# local rank of the process in the distributed setting, used to determine
# the GPU device id
# 在分布式设置中进程的本地排名,用于确定 GPU 设备 ID
"LOCAL_RANK":
lambda: int(os.environ.get("LOCAL_RANK", "0")),


# used to control the visible devices in the distributed setting
# 用于控制在分布式设置中可见设备的设置
"CUDA_VISIBLE_DEVICES":
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),


# timeout for each iteration in the engine
# 引擎中每次迭代的超时时间
"VLLM_ENGINE_ITERATION_TIMEOUT_S":
lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),


# API key for VLLM API server
# VLLM API 服务器的 API 密钥
"VLLM_API_KEY":
lambda: os.environ.get("VLLM_API_KEY", None),


# S3 access information, used for tensorizer to load model from S3
# S3 访问信息,用于 Tensorizer 从 S3 加载模型
"S3_ACCESS_KEY_ID":
lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
"S3_SECRET_ACCESS_KEY":
lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
"S3_ENDPOINT_URL":
lambda: os.environ.get("S3_ENDPOINT_URL", None),


# Usage stats collection
# 使用统计数据收集
"VLLM_USAGE_STATS_SERVER":
lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
"VLLM_NO_USAGE_STATS":
lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
"VLLM_DO_NOT_TRACK":
lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
"DO_NOT_TRACK", None) or "0") == "1",
"VLLM_USAGE_SOURCE":
lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),


# Logging configuration
# If set to 0, vllm will not configure logging
# If set to 1, vllm will configure logging using the default configuration
# or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
# 日志配置
# 如果设置为 0,vllm 将不配置日志
# 如果设置为 1,vllm 将使用默认配置或由 VLLM_LOGGING_CONFIG_PATH 指定的
# 配置文件配置日志
"VLLM_CONFIGURE_LOGGING":
lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
"VLLM_LOGGING_CONFIG_PATH":
lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),


# this is used for configuring the default logging level
# 用于配置默认日志级别
"VLLM_LOGGING_LEVEL":
lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO"),


# Trace function calls
# If set to 1, vllm will trace function calls
# Useful for debugging
# 跟踪函数调用
# 如果设置为 1,vllm 将跟踪函数调用
# 调试时很有用
"VLLM_TRACE_FUNCTION":
lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),


# Backend for attention computation
# Available options:
# - "TORCH_SDPA": use torch.nn.MultiheadAttention
# - "FLASH_ATTN": use FlashAttention
# - "XFORMERS": use XFormers
# - "ROCM_FLASH": use ROCmFlashAttention
# - "FLASHINFER": use flashinfer
# 注意力计算的后端
# 可用选项:
# - "TORCH_SDPA": 使用 torch.nn.MultiheadAttention
# - "FLASH_ATTN": 使用 FlashAttention
# - "XFORMERS": 使用 XFormers
# - "ROCM_FLASH": 使用 ROCmFlashAttention
# - "FLASHINFER": 使用 flashinfer
"VLLM_ATTENTION_BACKEND":
lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),


# If set, vllm will use flashinfer sampler
# 如果设置,vllm 将使用 flashinfer 采样器
"VLLM_USE_FLASHINFER_SAMPLER":
lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_SAMPLER", "0"))),


# Pipeline stage partition strategy
# 流水线阶段分区策略
"VLLM_PP_LAYER_PARTITION":
lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),


# (CPU backend only) CPU key-value cache space.
# default is 4GB
# (仅 CPU 后端)CPU 键值缓存空间。
# 默认是 4GB
"VLLM_CPU_KVCACHE_SPACE":
lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")),


# (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
# "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
# (仅 CPU 后端)通过 OpenMP 线程绑定的 CPU 核心 ID,例如 "0-31",
# "0,1,2","0-31,33"。不同排名的 CPU 核心用 '|' 分隔。
"VLLM_CPU_OMP_THREADS_BIND":
lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "all"),


# OpenVINO key-value cache space
# default is 4GB
# OpenVINO 键值缓存空间
# 默认是 4GB
"VLLM_OPENVINO_KVCACHE_SPACE":
lambda: int(os.getenv("VLLM_OPENVINO_KVCACHE_SPACE", "0")),


# OpenVINO KV cache precision
# default is bf16 if natively supported by platform, otherwise f16
# To enable KV cache compression, please, explicitly specify u8
# OpenVINO KV 缓存精度
# 默认是 bf16 如果平台原生支持,否则是 f16
# 要启用 KV 缓存压缩,请明确指定 u8
"VLLM_OPENVINO_CPU_KV_CACHE_PRECISION":
lambda: os.getenv("VLLM_OPENVINO_CPU_KV_CACHE_PRECISION", None),


# Enables weights compression during model export via HF Optimum
# default is False
# 在通过 HF Optimum 导出模型时启用权重压缩
# 默认是 False
"VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS":
lambda: bool(os.getenv("VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS", False)),


# If the env var is set, then all workers will execute as separate
# processes from the engine, and we use the same mechanism to trigger
# execution on all workers.
# Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
# 如果设置了该环境变量,则所有工作进程将作为引擎的单独进程执行,
# 并且我们使用相同的机制在所有工作进程上触发执行。
# 运行 vLLM 时将 VLLM_USE_RAY_SPMD_WORKER=1 启用它。
"VLLM_USE_RAY_SPMD_WORKER":
lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),


# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
# 如果设置了该环境变量,则使用 Ray 的编译 DAG API
# 优化控制平面开销。
# 运行 vLLM 时将 VLLM_USE_RAY_COMPILED_DAG=1 启用它。
"VLLM_USE_RAY_COMPILED_DAG":
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),


# If the env var is set, it uses NCCL for communication in
# Ray's compiled DAG. This flag is ignored if
# VLLM_USE_RAY_COMPILED_DAG is not set.
# 如果设置了该环境变量,则在 Ray 的编译 DAG 中使用 NCCL 进行通信。
# 如果未设置 VLLM_USE_RAY_COMPILED_DAG,此标志将被忽略。
"VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL":
lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL", "1"))
),


# Use dedicated multiprocess context for workers.
# Both spawn and fork work
# 为工作进程使用专用的多进程上下文。
# spawn 和 fork 均可使用
"VLLM_WORKER_MULTIPROC_METHOD":
lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),


# Path to the cache for storing downloaded assets
# 存储下载资产的缓存
"VLLM_ASSETS_CACHE":
lambda: os.path.expanduser(
os.getenv(
"VLLM_ASSETS_CACHE",
os.path.join(get_default_cache_root(), "vllm", "assets"),
)),


# Timeout for fetching images when serving multimodal models
# Default is 5 seconds
# 在提供多模态模型时获取图像的超时时间
# 默认是 5 秒
"VLLM_IMAGE_FETCH_TIMEOUT":
lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),


# Timeout for fetching audio when serving multimodal models
# Default is 5 seconds
# 在提供多模态模型时获取音频的超时时间
# 默认是 5 秒
"VLLM_AUDIO_FETCH_TIMEOUT":
lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "5")),


# Path to the XLA persistent cache directory.
# Only used for XLA devices such as TPUs.
# XLA 持久缓存目录的路径。
# 仅用于 XLA 设备,例如 TPU。
"VLLM_XLA_CACHE_PATH":
lambda: os.path.expanduser(
os.getenv(
"VLLM_XLA_CACHE_PATH",
os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
)),
"VLLM_FUSED_MOE_CHUNK_SIZE":
lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),


# If set, vllm will skip the deprecation warnings.
# 如果设置,vllm 将跳过弃用警告
"VLLM_NO_DEPRECATION_WARNING":
lambda: bool(int(os.getenv("VLLM_NO_DEPRECATION_WARNING", "0"))),


# If set, the OpenAI API server will stay alive even after the underlying
# AsyncLLMEngine errors and stops serving requests
# 如果设置,OpenAI API 服务器将在底层
# AsyncLLMEngine 错误后保持活动状态,停止提供请求
"VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),


# If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
# the user to specify a max sequence length greater than
# the max length derived from the model's config.json.
# To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
# 如果环境变量 VLLM_ALLOW_LONG_MAX_MODEL_LEN 被设置,它允许
# 用户指定一个大于从模型的 config.json 得到的最大长度的最大序列长度。
# 要启用此功能,设置 VLLM_ALLOW_LONG_MAX_MODEL_LEN=1。
"VLLM_ALLOW_LONG_MAX_MODEL_LEN":
lambda:
(os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
("1", "true")),


# If set, forces FP8 Marlin to be used for FP8 quantization regardless
# of the hardware support for FP8 compute.
# 如果设置,无论硬件对 FP8 计算的支持如何,都强制使用 FP8 Marlin 进行 FP8 量化。
"VLLM_TEST_FORCE_FP8_MARLIN":
lambda:
(os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
("1", "true")),


# Time in ms for the zmq client to wait for a response from the backend
# server for simple data operations
# zmq 客户端等待从后端的简单数据操作响应的时间(毫秒)
"VLLM_RPC_TIMEOUT":
lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),


# a list of plugin names to load, separated by commas.
# if this is not set, it means all plugins will be loaded
# if this is set to an empty string, no plugins will be loaded
# 要加载的插件名称列表,用逗号分隔。
# 如果没有设置,则意味着将加载所有插件
# 如果设置为空字符串,则不会加载任何插件
"VLLM_PLUGINS":
lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
"VLLM_PLUGINS"].split(","),


# Enables torch profiler if set. Path to the directory where torch profiler
# traces are saved. Note that it must be an absolute path.
# 如果设置,将启用 torch profiler。保存 torch profiler
# 跟踪的目录路径。请注意,它必须是绝对路径。


"VLLM_TORCH_PROFILER_DIR":
lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
.path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))),


# If set, vLLM will use Triton implementations of AWQ.
# 如果设置,vLLM 将使用 Triton 的 AWQ 实现
"VLLM_USE_TRITON_AWQ":
lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),


# If set, allow loading or unloading lora adapters in runtime,
# 如果设置,允许在运行时加载或卸载 lora 适配器,
"VLLM_ALLOW_RUNTIME_LORA_UPDATING":
lambda:
(os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
("1", "true")),
}